首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1227篇
  免费   140篇
  国内免费   596篇
测绘学   9篇
大气科学   12篇
地球物理   184篇
地质学   1377篇
海洋学   15篇
天文学   62篇
综合类   33篇
自然地理   271篇
  2024年   9篇
  2023年   28篇
  2022年   76篇
  2021年   94篇
  2020年   133篇
  2019年   130篇
  2018年   124篇
  2017年   108篇
  2016年   70篇
  2015年   82篇
  2014年   65篇
  2013年   153篇
  2012年   84篇
  2011年   59篇
  2010年   71篇
  2009年   74篇
  2008年   73篇
  2007年   82篇
  2006年   60篇
  2005年   49篇
  2004年   66篇
  2003年   54篇
  2002年   41篇
  2001年   20篇
  2000年   20篇
  1999年   16篇
  1998年   18篇
  1997年   16篇
  1996年   14篇
  1995年   14篇
  1994年   12篇
  1993年   14篇
  1992年   8篇
  1991年   4篇
  1990年   6篇
  1989年   6篇
  1988年   2篇
  1987年   2篇
  1986年   3篇
  1983年   2篇
  1954年   1篇
排序方式: 共有1963条查询结果,搜索用时 31 毫秒
41.
The “Nares Strait problem” represents a debate about the existence and magnitude of left-lateral movements along the proposed Wegener Fault within this seaway. Study of Palaeogene Eurekan tectonics at its shorelines could shed light on the kinematics of this fault. Palaeogene (Late Paleocene to Early Eocene) sediments are exposed at the northeastern coast of Ellesmere Island in the Judge Daly Promontory. They are preserved as elongate SW–NE striking fault-bounded basins cutting folded Early Paleozoic strata. The structures of the Palaeogene exposures are characterized by broad open synclines cut and displaced by steeply dipping strike-slip faults. Their fold axes strike NE–SW at an acute angle to the border faults indicating left-lateral transpression. Weak deformation in the interior of the outliers contrasts with intense shearing and fracturing adjacent to border faults. The degree of deformation of the Palaeogene strata varies markedly between the northwestern and southeastern border faults with the first being more intense. Structural geometry, orientation of subordinate folds and faults, the kinematics of faults, and fault-slip data suggest a multiple stage structural evolution during the Palaeogene Eurekan deformation: (1) The fault pattern on Judge Daly Promontory is result of left-lateral strike-slip faulting starting in Mid to Late Paleocene times. The Palaeogene Judge Daly basin formed in transtensional segments by pull-apart mechanism. Transpression during progressive strike-slip shearing gave rise to open folding of the Palaeogene deposits. (2) The faults were reactivated during SE-directed thrust tectonics in Mid Eocene times (chron 21). A strike-slip component during thrusting on the reactivated faults depends on the steepness of the fault segments and on their obliquity to the regional stress axes.Strike-slip displacement was partitioned to a number of sub-parallel faults on-shore and off-shore. Hence, large-scale lateral movements in the sum of 80–100 km or more could have been accommodated by a set of faults, each with displacements in the order of 10–30 km. The Wegener Fault as discrete plate boundary in Nares Strait is replaced by a bundle of faults located mainly onshore on the Judge Daly Promontory.  相似文献   
42.
The Quaternary Acatlán Volcanic Field (AVF) is located at the western edge of the Trans-Mexican Volcanic Belt (TMVB). This region is related to the subduction of the Pacific Cocos and Rivera plates beneath the North American plate since the late Miocene. AVF rocks are products of Pleistocene volcanic activity and include lava flows, domes, erupted basaltic andesite, trachyandesite, trachydacite, and rhyolite of calc–alkaline affinity. Most rocks show depletion in high field-strength elements and enrichment in large ion lithophile elements and light rare earth elements as is typical for magmas in subduction-related volcanic arcs. 87Sr/86Sr values range from 0.70361 to 0.70412, while Nd values vary from +2.3 to +5.2. Sr–Nd isotopic data plot along the mantle array. On the other hand, lead isotope compositions (206Pb/204Pb=18.62–18.75, 207Pb/204Pb=15.57–15.64, and 208Pb/204Pb=38.37–38.67) give evidence for combined influences of the upper mantle, fluxes derived from subducted sediments, and the upper continental crust involved in magma genesis at AVF. Additionally δ18O whole rock analyses range from +6.35‰ in black pumice to +10.9‰ in white pumice of the Acatlán Ignimbrite. A fairly good correlation is displayed between Sr as well as O isotopes and SiO2 emphasizing the effects of crustal contamination. Compositional and isotopic data suggest that the different AVF series derived from distinct parental magmas, which were generated by partial melting of a heterogeneous mantle source.  相似文献   
43.
Sung Won Kim   《Gondwana Research》2005,8(3):385-402
An understanding of the Okcheon Metamorphic Belt (OMB) in South Korea is central to unraveling the tectono-metamorphic evolution of East Asia. Amphibole-bearing rocks in the OMB occur as calcsilicate layers and lenses in psammitic rocks, in the psammitic rocks themselves, and in the mafic volcanic layers and intrusives. Most amphiboles fail to show 40Ar/39Ar plateau ages; those that do have ages ranging from 132 to 975 Ma. The disturbed age pattern and wide variation in 40Ar/39Ar ages can be related to metamorphic grade, retrograde chemical reactions, excess Ar and amphibole composition. The oldest age (975 Ma) can be interpreted either as an old igneous or metamorphic age predating sedimentation or a false age caused by excess Ar. The youngest age of 132 Ma and the disturbed age pattern found in amphiboles from rocks located close to Jurassic granitoids are the result of retrograde thermal metamorphic effects accompanying intrusion of the granitoids. Some medium- or coarse-grained amphiboles in the calcsilicates are aggregates of fine-grained crystals. As a result, they are heterogeneous and prove to be readily affected by excess Ar. A disturbed age pattern in amphiboles from the calcsilicates occurring in the high-grade metamorphic zone may also be the product of excess Ar. On the other hand, the disturbed pattern of amphiboles present in the calcsilicates from the low-grade metamorphic zone could arise from both excess Ar and mixed ages. However, amphiboles from psammitic rocks and some calcsilicates in the high-grade metamorphic zone and in intrusive metabasites display real plateau ages of 237 to 261 Ma. The temperature conditions in the high-grade metamorphic zone were higher than the argon closing temperature for amphibole, and the amphiboles in this zone give plateau ages only when they are homogeneous in composition, lack excess Ar, and have not been thermally affected by intrusion of the granitoids. The unmodified 40Ar/39Ar ages prove rather younger than the age of the Late Paleozoic metamorphic event of 280 to 300 Ma, but they are close to muscovite K-Ar ages of 263 to 277 Ma. These 40Ar/39Ar amphibole ages are interpreted as the time of cooling that followed the main regional, intermediate-P/T metamorphic climax. The results demonstrate that interpretation of 40Ar/39Ar amphibole ages in an area subjected to several metamorphic events can be accomplished only by undertaking a thorough tectono-metamorphic study, accompanied by detailed chemical analysis of the amphiboles.  相似文献   
44.
Gold mineralization at Hutti is confined to a series of nine parallel, N–S to NNW–SSE trending, steeply dipping shear zones. The host rocks are amphibolites and meta-rhyolites metamorphosed at peak conditions of 660±40°C and 4±1 kbar. They are weakly foliated (S1) and contain barren quartz extension veins. The auriferous shear zones (reefs) are typically characterized by four alteration assemblages and laminated quartz veins, which, in places, occupy the entire reef width of 2–10 m, and contain the bulk of gold mineralization. A <1.5 m wide distal chlorite-sericite (+biotite, calcite, plagioclase) alteration zone can be distinguished from a 3–5 m wide proximal biotite-plagioclase (+quartz, muscovite, calcite) alteration zone. Gold is both spatially and temporally associated with disseminated arsenopyrite and pyrite mineralization. An inner chlorite-K-feldspar (+quartz, calcite, scheelite, tourmaline, sphene, epidote, sericite) alteration halo, which rims the laminated quartz veins, is characterized by a pyrrhotite, chalcopyrite, sphalerite, ilmenite, rutile, and gold paragenesis. The distal chlorite-sericite and proximal biotite-plagioclase alteration assemblages are developed in microlithons of the S2–S3 crenulation cleavage and are replaced along S3 by the inner chlorite-K-feldspar alteration, indicating a two-stage evolution for gold mineralization. Ductile D2 shearing, alteration, and gold mineralization formed the reefs during retrograde evolution and fluid infiltration under upper greenschist to lower amphibolite facies conditions (560±60°C, 2±1 kbar). The reefs were reactivated in the D3 dextral strike-slip to oblique-slip environment by fault-valve behavior at lower greenschist facies conditions (ca. 300–350°C), which formed the auriferous laminated quartz veins. Later D4 crosscutting veins and D5 faults overprint the gold mineralization. The alteration mineralogy and the structural control of the deposit clearly points to an orogenic style of gold mineralization, which took place either during isobaric cooling or at different levels of the Archean crust. From overlaps in the tectono-metamorphic history, it is concluded that gold mineralization occurred during two tectonic events, affecting the eastern Dharwar craton in south India between ca. 2550 – 2530 Ma: (1) The assemblage of various terranes of the eastern block, and (2) a tectono-magmatic event, which caused late- to posttectonic plutonism and a thermal perturbation. It differs, however, from the pre-peak metamorphic gold mineralization at Kolar and the single-stage mineralization at Ramagiri. Notably, greenschist facies gold mineralization occurred at Hutti 35–90 million years later than in the western Dharwar craton. Editorial handling: G. Beaudoin  相似文献   
45.
Extensive high-grade polydeformed metamorphic provinces surroundingArchaean cratonic nuclei in the East Antarctic Shield recordtwo tectono-thermal episodes in late Mesoproterozoic and lateNeoproterozoic–Cambrian times. In Western Dronning MaudLand, the high-grade Mesoproterozoic Maud Belt is juxtaposedagainst the Archaean Grunehogna Province and has traditionallybeen interpreted as a Grenvillian mobile belt that was thermallyoverprinted during the Early Palaeozoic. Integration of newU–Pb sensitive high-resolution ion microprobe and conventionalsingle zircon and monazite age data, and Ar–Ar data onhornblende and biotite, with thermobarometric calculations onrocks from the H.U. Sverdrupfjella, northern Maud Belt, resultedin a more complex PTt evolution than previouslyassumed. A c. 540 Ma monazite, hosted by an upper ampibolite-faciesmineral assemblage defining a regionally dominant top-to-NWshear fabric, provides strong evidence for the penetrative deformationin the area being of Pan-African age and not of Grenvillianage as previously reported. Relics of an eclogite-facies garnet–omphaciteassemblage within strain-protected mafic boudins indicate thatthe peak metamorphic conditions recorded by most rocks in thearea (T = 687–758°C, P = 9·4–11·3kbar) were attained subsequent to decompression from P >12·9 kbar. By analogy with limited U–Pb singlezircon age data and on circumstantial textural grounds, thisearlier eclogite-facies metamorphism is ascribed to subductionand accretion around 565 Ma. Post-peak metamorphic K-metasomatismunder amphibolite-facies conditions is ascribed to the intrusionof post-orogenic granite at c. 480 Ma. The recognition of extensivePan-African tectonism in the Maud Belt casts doubts on previousRodinia reconstructions, in which this belt takes a pivotalposition between East Antarctica, the Kalahari Craton and Laurentia.Evidence of late Mesoproterozoic high-grade metamorphism duringthe formation of the Maud Belt exists in the form of c. 1035Ma zircon overgrowths that are probably related to relics ofgranulite-facies metamorphism recorded from other parts of theMaud Belt. The polymetamorphic rocks are largely derived froma c. 1140 Ma volcanic arc and 1072 ± 10 Ma granite. KEY WORDS: Maud Belt; Pan-African orogeny; geochronology; PTt path, East Antarctica  相似文献   
46.
Differentiation of the continental crust is the result of complex interactions between a large number of processes, which govern partial melting of the deep crust, magma formation and segregation, and magma ascent to significantly higher crustal levels. The anatectic metasedimentary rocks exposed in the Southern Marginal Zone of the Limpopo Belt represent an unusually well‐exposed natural laboratory where the portion of these processes that operate in the deep crust can be directly investigated in the field. The formation of these migmatites occurred via absent incongruent melting reactions involving biotite, which produced cm‐ to m‐scale, K2O‐poor garnet‐bearing stromatic leucosomes, with high Ca/Na ratios relative to their source rocks. Field investigation combined with geochemical analyses, and phase equilibrium modelling designed to investigate some aspects of disequilibrium partial melting show that the outcrop features and compositions of the leucosomes suggest several steps in their evolution: (1) Melting of a portion of the source, with restricted plagioclase availability due to kinetic controls, to produce a magma (melt + entrained peritectic minerals in variable proportions relative to melt); (2) Segregation of the magma at near peak metamorphic conditions into melt accumulation sites (MAS), also known as future leucosome; (3a) Re‐equilibration of the magma with a portion of the bounding mafic residuum via chemical diffusion (H2O, K2O), which triggers the co‐precipitation of quartz and plagioclase in the MAS; (3b) Extraction of melt‐dominated magma to higher crustal levels, leaving peritectic minerals entrained from the site of the melting reaction, and the minerals precipitated in the MASs to form the leucosome in the source. The key mechanism controlling this behaviour is the kinetically induced restriction of the amount of plagioclase available to the melting reaction. This results in elevated melt H2O and K2O and chemical potential gradient for these components across the leucosome/mafic residuum contact. The combination of all of these processes accurately explains the composition of the K2O‐poor leucosomes. These findings have important implications for our understanding of melt segregation in the lower crust and minimum melt residency time which, according to the chemical modelling, is <5 years. We demonstrate that in some migmatitic granulites, the leucosomes constitute a type of felsic refractory residuum, rather than evidence of failed magma extraction. This provides a new insight into the ways that source heterogeneity may control anatexis.  相似文献   
47.
杨更生  王东  孙彬 《干旱区地理》2019,42(1):187-194
本文探究“一带一路”旅游大数据的产业创新体系架构,明确“旅游文化建设、旅游消费习性培育、跨域资源协作”等产业创新路径,明晰沿线各国的文化融合途径,构建以“文化通”为内涵的旅游大数据体系。通过文献梳理、质化研究和实时数据分析,建构适用性旅游大数据架构,解决“一带一路”旅游文化产业中的信息稀疏、习性碎片化和诚信不足等现实困难,助力沿线各国的旅游发展新局面。借鉴应用系统工程中霍尔三维支撑理论,从知识、时间和逻辑三个维度,搭建新时代条件下旅游业态的以价值集聚、诚信保护和旅游文化传承为核心的创新途径支持体系,为旅游经济管理理论,提供了一个全新的研究视角。  相似文献   
48.
Most countries along the route of the “Belt and Road” initiative are faced with a shortage of water resources. However, successful implementation of the initiative depends on water availability to support economic and social development. We designed a water resources carrying capacity evaluation index system, assigned grades and weights to each evaluation index and calculated a water resources carrying index for the 65 countries along the route. We used virtual water theory to analyze China’s net virtual water import from key bulk agricultural products through international trade. For more than half of the countries along the route, their water resources will be unable to support the economic development that will be necessary for fulfilling the goals of the Initiative. As a country with insufficient water resources carrying capacity, China is a net virtual water importer in the virtual water trade. This virtual water trade can improve China’s water resources support capacity, and ensure China’s water and food security for the future.  相似文献   
49.
王成金  陈沛然  王姣娥  李娜 《地理研究》2020,39(12):2685-2704
基础设施互联互通是不同区域之间空间网络形成的支撑,对区际生产要素流动、市场融合和资源配置具有重要作用,也是“一带一路”建设的重点内容和前提条件。立足于综合基础设施网络,以“一带一路”沿线国家/地区为分析地域,设计数理模型,评价了中国与沿线国家的基础设施网络连通性,考察其基本特征与空间格局,然后分别从铁路、公路、航运、通讯、能源等各种基础设施方式的视角,分析了不同基础设施网络的互联互通水平,探讨了基础设施连通的类型分异及其主导因素,凝练基础设施连通的空间模式。主要结论如下:① 从海陆属性来看,岛屿型国家与中国设施连通性最高,其次为综合型国家,内陆型国家最低。对国际区域而言,俄蒙和东南亚地区与中国的设施连通性最高,中东欧地区连通性最低。从国家尺度来看,俄罗斯和越南是与中国设施连通水平最高的国家,巴勒斯坦、东帝汶等5个国家与中国尚未形成设施连通性。从连通方式的构成来看,航运网络的连通性最高,其次为航空和光缆。② 空间距离、连通方式和重大交通走廊共同主导了设施连通性的类型分异。③ “一带一路”沿线国家/地区与中国的设施连通形成了四种典型模式,包括海陆融合型外缘连通模式、陆路通道直接连通模式、陆心内生性低水平连通模式、远距离不均衡连通模式。  相似文献   
50.
In the northern Flinders Ranges, Neoproterozoic and Cambrian sedimentary rocks were deformed and variably metamorphosed during the ca 500 Ma Cambro‐Ordovician Delamerian Orogeny. Balanced and restored structural sections across the northern Flinders Ranges show shortening of about 10–20%. Despite the presence of suitable evaporitic detachment horizons at the basement‐cover interface, the structural style is best interpreted to be thick‐skinned involving basement with only a minor proportion of the overall shortening accommodated along stratigraphically controlled detachments. Much of the contractional deformation was localised by the inversion of former extensional faults such as the Norwest and Paralana Faults, which both controlled the deposition of Neoproterozoic cover successions. As such, both faults represent major, long‐lived structures which effectively define the present boundaries of the northern Flinders Ranges with the Gawler Craton to the west and the Curnamona Craton to the east. The most intense deformation, which resulted in exhumation of the basement along the Paralana Fault to form the Mt Painter and Babbage Inliers, coincides with extremely high heat flows related to extraordinarily high heat‐production rates in the basement rocks. High heat flow in the northern Flinders Ranges suggests that the structural style not only reflects the pre‐Delamerian basin architecture but is also a consequence of the reactivation of thermally perturbed, weakened basement.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号